MATRIX-VBS:

Condensing Organic Aerosols In An Aerosol Microphysics Model

Chloe Y. Gao^{1,2}, Kostas Tsigaridis^{3,2}, Susanne E. Bauer^{3,2}

[1] Department of Earth and Environmental Sciences, Columbia University, New York, NY
[2] NASA Goddard Institute for Space Studies, New York, NY
[3] Center for Climate Systems Research, Columbia University, New York, NY

Background & Motivation

Aerosols play an important role in public health and climate.

• Organic aerosol (OA): Ubiquitous, a major component of atmospheric aerosols [Zhang et al. 2007]

Evolution of OA [Jimenez et al. 2009]: Become more oxidized and less volatile.

HOA: surrogate for urban POA from fossil fuel burning etc.
Other OA=other POA, e.g. BBOA

SV-OOA= semi-volatile OOA LV-OOA=low volatility OOA Total OOA

- **Problem:** Measurements imply that OA concentration are underestimated in models [*Tsigaridis et al.*, 2014].
- Caused by: missing amount organic aerosols.
- **Solution:** include semi-volatile primary organic aerosols (POA) and intermediate volatility organic compounds (IVOCs).
 - -Approach: volatility-basis set (VBS)[Donahue et al. 2006]
 - -Past studies: Regional [Hodzic et al., 2010] and global [Farina et al., 2010; Jathar et al., 2011; Pye and Seinfeld, 2010; Robinson et al., 2007; Shrivastava et al., 2008, Tsimpidi et al., 2014].

Important for aerosol size distribution:

- Very low volatility organics play a key role in particle growth: condense on all sizes.
- The range of volatilities contributing to aerosol growth increases with aerosol size [*Pierce et al.*, 2011; *Yu*, 2011].

Condensation	High Volatility	Low Volatility	
Small particles	no	yes	
Large particles	yes	yes	

• Affects aerosol size and mixing state & its impact on climate.

Objective

To introduce the process of condensing organics in an aerosol microphysics model.

Method and Approach

• Coupling the GISS ModelE2 MATRIX scheme with the VBS framework in a box model.

MATRIX

- Aerosol microphysics model, stand alone box model or module within the GCM – identical code
- Describes the mixing state of different aerosol populations[Bauer et al. 2008].
- POA: non-volatile
- No condensation of organics.

VBS

• Describes organic aerosols by separating low volatility organics into bins of effective saturation concentration, including gasparticle partition [Donahue et al. 2006].

✓ New version:

- POA semi-volatile, SVOCs and IVOCs represented with VBS
- Partition among different aerosol populations based on size and volatility,
 capturing particle growth via organic condensation

Mixing State

Case Studies

Conditions

- Duration: 10 days
- Initial conditions from global model surface values output

March 2006		Units	Beijing	Centreville	Hyytiälä	Mexico City
Parameters	Temperature	K	278	289	268	289
	Pressure	hPa	1005	996	1009	797
	RH	%	46.6	77.7	79.5	62.5
Gas emissions	NO _x	pptv/hr	222.2	90.3	172.0	143.1
	CO		7188.1	1383.7	570.0	2481.6
	Alkenes		4.4	0.3	0.1	1.4
	Paraffin		8.5	2.3	0.6	10.8
	Terpenes		4.1	41.6	15.2	34.5
	Isoprene		24.0	106.1	0.2	34.5
	SO ₂		577.5	197.7	24.7	551.0
	NH ₃		187.4	24.5	52.0	63.0
Aerosol emissions	sulfate	ug/m³/hr	0.06	0.02	0.003	0.05
	black carbon		0.09	0.01	0.008	0.03
	organics*		0.19	0.03	0.015	0.11

^{*}Organics 2.5x more in the new scheme. (Shrivastava et al., 2008)

Beijing: Semi-volatile vs. Nonvolatile Organics

Beijing: gas phase vs. aerosol phase organics

- High volatile species in the gas phase
- Low volatile species in the aerosol phase
- Intermediate volatility bins partition between gas and aerosol phase

Beijing: Mixing state – organics aerosols per population

- Organics emitted in OCC previously nonvolatile, now semi-volatile
- Difference: OA loss previously via coagulation, now coagulation and evaporation into gas phase & condensation onto others
- Similarity: both favor BOC (more BC1 than ACC, largest surface area)

Conclusion

- Beijing and Hyytiälä
 - Different pollution levels, similar distribution of volatility
 & mostly in the gas phase due to low 'OH levels
 - Different amount of pre-existing aerosols, still similar distribution due to different temperatures
- Mexico City and Centreville
 - Similar 'OH levels, different distribution of volatility due to different amount of pre-existing aerosols
 - More 'OH than in Beijing and Hyytiälä, mostly in the aerosol phase

Future Work

- ✓ Stage 1: Box model development
- ✓ Stage 2: Case Studies
- ☐ Stage 3: Sensitivity tests & include condensing organics in dust and sea salt aerosols
- ☐ Stage 4: Simplification: Reduce number of tracers
- □Stage 5: GCM implementation: box model is a module within GISS ModelE2 identical code